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Classical infinite-range-interaction Heisenberg ferromagnetic model:
Metastability and sensitivity to initial conditions
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An N-sized inertial classical Heisenberg ferromagnet, which consists of a modification of the well-known
standard model, where the spins are replaced by classical rotators, is studied in the limit of infinite-range
interactions. The usual canonical-ensemble mean-field solution of the inertial classicaln-vector ferromagnet
~for which n53 recovers the particular Heisenberg model considered herein! is briefly reviewed, showing the
well-known second-order phase transition. This Heisenberg model is studied numerically within the microca-
nonical ensemble through molecular dynamics. In what concerns the caloric curve, it is shown that, far from
criticality, the kinetic temperature obtained at the long-time-limit microcanonical-ensemble simulation recovers
well the equilibrium canonical-ensemble estimate, whereas, close to criticality, a discrepancy~presumably due
to finite-size effects! is found. The time evolution of the kinetic temperature indicates that a basin of attraction
exists for the initial conditions for which the system evolves into a metastable state, whose duration diverges
asN→`, before attaining the terminal thermal equilibrium. Such a metastable state is observed for a whole
range of energies, which starts right below criticality and extends up to very high energies~in fact, the gap
between the kinetic temperatures associated with the metastable and the terminal-equilibrium states is expected
to disappear only as one approaches infinite energy!. To the best our knowledge, this has never before been
observed on similar Hamiltonian models, in a noticeable way, for such a large range of energies. For example,
for theXY (n52) version of the present model, such a behavior was observed only near criticality. It is shown
also that the~metastable state! maximum Lyapunov exponent decreases withN like lmax;N2k, where for the
initial conditions employed herein~maximal magnetization!, k50.22560.030, both above and below the
critical point.
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I. INTRODUCTION

The Boltzmann-Gibbs~BG! statistical mechanics repre
sents one of the most successful physical theories, provi
a good description of many experimental systems at equ
rium @1–3#. The applicability of such a formalism is justifie
upon the validity of the ergodic hypothesis, which requir
that the whole phase space should be equally visited in
infinite-time limit. Typically, this occurs for large Hamil
tonian systems, with dynamical variables connected
short-range interactions, leading to a microscopic dynam
characterized by a quasicontinuum Lyapunov spectr
whose largest value remains positive in the thermodyna
limit. Such a chaotic dynamical behavior leads to a qu
occupation of phase space, ensuring a safe use of the
semble theory, and so the BG statistics may be connecte
the standard extensive thermodynamics in the well-kno
elegant manner. However, ergodicity and, consequently,
validity of the standard equilibrium ensembles, depend c
cially on the nature of the Hamiltonian system conside
@4#. In particular, systems characterized by long-range in
actions, or long-range microscopic memory, may presen
breakdown of ergodicity, leading to a fractal~or even more
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complex! structure in phase space. In such cases, the
statistical-mechanics framework looses its validity and so
more general theory must be employed. Recently, a la
variety of evidences has been presented, exhibiting res
that do not conform with the BG formalism; one may me
tion observations on turbulent plasmas@5#, turbulent fluids
@6–8#, astrophysical systems@9–13#, quantum chaos@14#,
logistic map @15#, glasses@16,17#, and complex systems
@18,19#, among others. Such systems exhibit evident inc
sistencies with one of the main characteristics in the
formalism, which is the extensivity of the entropy and t
exponential weight factor associated with it. For
N-particle system, the extensivity property means that qu
tities such as the internal or free energyper particleshould
approach a well-defined finite thermodynamic limit whenN
→`. When long-range interactions are present, each mi
scopic constituent of the system interacts with all the othe
leading to an energy that depends more than linearly onN,
and, obviously, to a nonextensive behavior. As a con
quence of this, additivity does not hold, in the sense that
free energy of the whole system is not equal to the sum
the free energies of its macroscopic parts, and the applica
of the BG formalism becomes questionable. A generaliz
nonextensive thermostatistical formalism, proposed ove
decade ago@20,21#, seems to be a good candidate to de
with such systems.

Recently, a lot of attention has been dedicated to a c
sical Hamiltonian system, namely, the inertial long-rang
©2003 The American Physical Society15-1
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F. D. NOBRE AND C. TSALLIS PHYSICAL REVIEW E68, 036115 ~2003!
interactionXY model, which consists of an assembly ofN
classical planar rotators interacting through a long-range
tential @22–35#. Such a system, which has been investiga
numerically within the microcanonical ensemble, presen
clear indications that a more general statistical-mecha
formalism is required for its description. In particular, for th
case of infinite-range interactions, i.e., mean-field limit,
which a well-known continuous phase transition occurs
one considers a total energy close to and below the crit
energy, there exists a basin of attraction for the initial con
tions for which the system gets captured in a metasta
state, whose duration increases withN, before attaining the
terminal thermal equilibrium. Therefore, if one considers
thermodynamic limit (N→`) beforethe long-time limit, the
system will remain in the metastable state and will ne
reach the terminal equilibrium state, in such a way that
phase space willnot be equally and completely covere
Moreover, in such a metastable state, the maxim
Lyapunov exponent approaches zero, asN→`, contrary to
what is expected in a standard BG equilibrium state.

In the present work we perform molecular dynamical
vestigations, of the isolated inertial infinite-range-interact
Heisenberg ferromagnet, defined byN classical Heisenberg
like rotators. We show that the metastable state that occu
the correspondingXY version of the model, near criticality
now appears in a noticeable way for a much wider extent,
an energy range that starts right below criticality and p
longs up to very high energies. In the following section,
review the equilibrium canonical-ensemble solution of t
model. In Sec. III we present the results of our numeri
investigation, and finally, in Sec. IV, we present our ma
conclusions.

II. THE EQUILIBRIUM CANONICAL-ENSEMBLE
SOLUTION

Let us now work out the equilibrium canonical-ensemb
solution of the model. For the sake of generality, through
this section, we will deal with an inertialn-vector ferromag-
net, composed ofN classical rotators, each of them defin
in an n-dimensional configurational space. The Hamiltoni
of the system is given by

H5K1V5
1

2 (
i 51

N

(
m51

n

Lim
2 1

1

2N (
i , j 51

N

~12SW i •SW j !

5
1

2 (
i 51

N

(
m51

n

Lim
2 1

1

2N (
i , j 51

N S 12 (
m51

n

SimSj mD ,

~2.1!

where the indexm (m51,2, . . . ,n) denotes Cartesian com
ponents andLim represents them component of the angula
momentum~or the rotational velocity, since we are assumi
unit inertial moments! of rotator i, when n53; when n is
different from 3,Lim can be considered as a proper gene
ized momentum. In fact, for the general case ofn compo-
nents~as considered in the present section!, LW is an antisym-
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metric tensor of rank 2, withn(n21)/2 components. This
number coincides withn for n53, allowing us to treatLW as
a ~pseudo!vector forn53.

It is important to remind that theN dependence in the
coupling constant above, is usually~but not necessarily, se
Ref. @24#! introduced in order to yield a sensible thermod
namic limit, i.e, a finite free energy per particle whenN
→`, within the equilibrium ensemble theory of standa
statistical mechanics.

The rotators are allowed to vary their directions contin
ously inside ann-dimensional sphere of unit radius, leadin
to the constraint

(
m51

n

Sim
2 51 ~ i 51,2, . . . ,N!. ~2.2!

It should be mentioned that such a constraint reduces
number of degrees of freedom per particle ton21, in such a
way that the total number of degrees of freedom of the s
tem is given byN(n21). The model defined above recov
ers, as particular cases, the mean-field inertialXY ~whose
equilibrium canonical-ensemble solution was presented
Ref. @22#! and Heisenberg~whose dynamics will be dis-
cussed in the following section! models, forn52 and n
53, respectively. Although our model is composed of on
dimensional inertial constituents~rotators!, we shall some-
times refer toSW [(S1 ,S2 , . . . ,Sn) as spin variables, consid
ering the close analogy of the above-defined model with
standardn vector ferromagnet.

One may now follow the standard procedure by rewriti
the Hamiltonian as

H5
N

2
1

1

2 (
i 51

N

(
m51

n

Lim
2 2

1

2N (
m51

n S (
i 51

N

SimD 2

, ~2.3!

in such a way that the partition function becomes

Z5expS 2bN

2 D E S )
i 51

N

)
m51

n

dSimD S )
i 51

N

)
m51

n21

dLimD
3F)

i 51

N

dS (
m51

n

Sim
2 21D GF)

i 51

N

)
m51

n21

expS 2bLim
2

2 D G
3H )

m51

n

expF S b

2ND S (
i 51

N

SimD 2G J . ~2.4!

The constraints of Eq.~2.2! are taken into account in th
equation above, through thed functions, as well as in the
products over the angular momentum variables, which ap
only over the effective number of degrees of freedom
particle, m51,2, . . . ,n21. The squared( i may be linear-
ized through the application of a Hubbard-Stratonovich-l
transformation@2#, which introduces a set of paramete
$xm%; rescaling$xm%→AN$xm% one gets
5-2
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Z5S 2p

b D N(n21)/2

expS 2bN

2 D E H )
m51

n F S N

2p D 1/2

dxm

3expS 2Nxm
2

2 D G J )
i 51

N H E )
m51

n

@dSimexp~b1/2Simxm!#

3dS (
m51

n

Sim
2 21D J . ~2.5!

As usual, the site index may be discarded, and straight
ward calculations lead to

Z5S 2p

b D N(n21)/2

expS 2bN

2 D E F )
m51

n S N

2p D 1/2

dxmG
3expF2NS (

m51

n xm
2

2
2 ln j D G , ~2.6!

where

j52(n22)/2pny2(n22)/2I (n22)/2~y!, y5S b (
m51

n

xm
2 D 1/2

,

~2.7!

with I k(y) denoting modified Bessel functions of the fir
kind of orderk. ConsideringN large, one may use steepe
descents

Z'S 2p

b D N(n21)/2

expS 2bN

2 D
3expF2N maxyS y2

2b
2 ln j~y! D G , ~2.8!

with the condition of maximum leading to the self-consiste
equation

ȳ5bS 1

j

dj

dyD
y5 ȳ

5b
I n/2~ ȳ!

I (n22)/2~ ȳ!
. ~2.9!

In the thermodynamic limit, one obtains the free energy
particle

b f 5
b

2
2

n21

2
lnS 2p

b D1
ȳ2

2b
2 ln j~ ȳ!, ~2.10!

as well as the internal energy per particle

u5
n21

2b
1

1

2
~12mW 2!, ~2.11!

where mW represents the magnetization per particle, wh
modulus is directly related to the parameterȳ,

m[umW u5
ȳ

b
5

I n/2~bm!

I (n22)/2~bm!
. ~2.12!
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The critical temperature of the model may be obtained
consideringm small and expanding the right-hand side
Eq. ~2.9! in power series~we work in units ofkB51),

Tc5
1

2

G~n/2!

G„~n12!/2…
5

1

n
, ~2.13!

which may be substituted into Eq.~2.11! to yield the critical
energy density

uc5
1

2
@11~n21!Tc#512

1

2n
. ~2.14!

The above results recover those obtained in Ref.@22#, for n
52, e.g., the self-consistent equation

ȳ5b
I 1~ ȳ!

I 0~ ȳ!
, ~2.15!

leading toTc51/2 anduc53/4. For the casen53, one gets
the well-known self-consistent equation

m5coth~bm!2
1

bm
, ~2.16!

with Tc51/3 anduc55/6. Forn increasing from unity~Ising
model! to infinity ~spherical model!, Tc decreases from 1 to 0
anduc increases from 1/2 to 1.

In the following section we discuss the dynamics of t
particular casen53 of the model defined above.

III. DYNAMICS OF THE MEAN-FIELD INERTIAL
HEISENBERG MODEL

A. Molecular dynamics

In this section we will present the results obtained
simulations of the constant-energy dynamics of the mo
defined by Eqs.~2.1! and ~2.2! for the particular casen
53, i.e., Heisenberg-like rotators. From now on, we will u
the standard notation for the Cartesian components o
Heisenberg model, i.e.,m5x,y,z. The results to be dis-
cussed below were obtained by a direct integration of
equations of motion

LẆ i5SW i3S 1

N (
j 51

N

SW j D ~ i 51,2, . . . ,N!, ~3.1a!

SẆ i5LW i3SW i ~ i 51,2, . . . ,N!, ~3.1b!

which correspond to a set of 6N equations to be solved nu
merically.

It should be stressed that Eqs.~3.1! are not canonical
equations of motion, since$Lim% and $Sim% are not canoni-
cally conjugate variables. In that sense, one could say
Eq. ~2.1! represents the energy, and not the Hamiltoni
from which one obtains the canonical equations of moti
In addition to that, according to the discussion of the prec
ing section, the generalization of Eqs.~3.1! for nÞ3 is to be
handled with care.
5-3
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F. D. NOBRE AND C. TSALLIS PHYSICAL REVIEW E68, 036115 ~2003!
For solving such a set of equations we have used a fou
order Runge-Kutta-Merson integrator@36# with a time step
of 0.05, leading, respectively, to the relative energy and s
normalization conservations of 1024 and 1023, or better. The
total initial kinetic energy was divided into three equal par
each of them to be assigned to a given set of Cartesian c
ponents of angular velocities$Lim% ( i 51,2, . . . ,N). We
have always started the system with the so-called water
initial conditions @29,30,34# for each set of components o
angular velocities, i.e., each set$Lim% was extracted from a
symmetric uniform distribution and then, translated and r
caled to have zero total momentum. In what concerns
spin variables, we have started our simulations with all sp
aligned along thez axis ~zero initial potential energy!. Our
measured quantities correspond to averages overNs distinct
samples, i.e., different initial sets of$Lim%.

B. Caloric curve and metastability

In Fig. 1 we exhibit the caloric curve~full line! obtained
by solving the equilibrium canonical-ensemble equatio
@Eqs.~2.11! and~2.12!#. We have chosen four particular va
ues of the energy density to investigate, within o
microcanonical-ensemble molecular dynamical approa
how ^K&/N evolves in time, for different values ofN ~it
should be mentioned that the quantity^K&/N, which repre-
sents an average over different initial conditions of the
netic energy per particle, when evaluated at thet→` equi-
librium, is expected to coincide with the temperature!. Two
of the chosen energies,u50.75@Fig. 2~a!# andu50.96@Fig.
2~b!#, correspond, respectively, to values slightly below a
above the critical internal energy (uc55/6). The energyu

FIG. 1. The caloric curve for the inertial mean-field ferroma
netic Heisenberg model obtained by the equilibrium canonic
ensemble solution~full line!. In the vertical axis,̂ K&/N is a quan-
tity that is expected to coincide with the temperature,
equilibrium. The dashed vertical line signals the second-order ph
transition critical energy density,uc55/6. The empty squares an
circles represent the estimates of^K&/N from the microcanonical-
ensemble numerical analysis of a system of sizeN5400, at the
metastable state and after that, respectively. For the Hamilto
defined in Eq.~2.1!, energies are dimensionless quantities.
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51.32 @Fig. 2~c!# is inside a range of energies where t
kinetic temperaturêK&/N presents a maximum discrepanc
between its values at intermediate and long times. Fina
the fourth chosen energy,u57.2 @Fig. 2~d!# corresponds to a
value far aboveuc . In all the plots of Figs. 2~a!–~d! the
system was started with the above-mentioned initial con
tions and we have consideredNs516 (N5200), Ns512
(N5400), Ns58 (N5800), andNs54 (N51600). We
have observed that, after a short transient, the system rap
reached a metastable or quasistationary state~QSS!, with a
value of ^K&/N higher than the one predicted by th
canonical-ensemble equilibrium theory. It is important to
mind that a QSS has been found also for the correspon
XY version of the present model, in an unambiguous w
only near criticality@23,25,27,29,30,34#. Except for very low
energies, the QSS is always detected easily in the Heisen
case; this is shown in Fig. 1, where we exhibit the values
^K&/N for both QSSs ~empty squares! and terminal-
equilibrium states~empty circles!, for systems withN5400
and different values of the energy density. One clearly s
that, in what concerns the value of^K&/N at long times, the
thermodynamic limit may be attained within our comput
tional effort ~in the sense that the present microcanonic
ensemble numerical approach agrees with the equilibr

l-

t
se

an
FIG. 2. The microcanonical time evolution of^K&/N is repre-

sented for several system sizes and different energy densities
below criticality @u50.75 ~a!#, just above criticality@u50.96 ~b!#,
at the region where the gap between the metastable and term
equilibrium states is maximum@u51.32 ~c!# and for u@uc @u
57.2 ~d!#. The initial conditions are water bag for velocities an
m51. For the Hamiltonian defined in Eq.~2.1!, energies are di-
mensionless quantities. The time is also dimensionless and
unit of ~physical! time t corresponds to 20 iterations of the equ
tions of motion.
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CLASSICAL INFINITE-RANGE-INTERACTION . . . PHYSICAL REVIEW E68, 036115 ~2003!
canonical-ensemble results! for u@uc , whereas foru;uc
~typically in the range 0.25,u,1.25), one observes a dis
crepancy between the numerics and the analytical BG re
In fact, the terminal-equilibrium value of̂K&/N seems to
reach its thermodynamic limit for very small systems, ifu
@uc @as shown in Fig. 2~d!, for the caseu57.2, where for
the sizeN5200 the thermodynamic limit appears to be
tained#. We find two possible causes for explaining the d
crepancies shown in Fig. 1, near criticality:~i! strong finite-
size effects, in such a way that one should run much la
sizes than those exhibited in Figs. 2~a! and 2~b! in order to
reach the thermodynamic-limit values and~ii ! a three-
plateaux structure, i.e., the long-time states exhibited in F
2~a! and 2~b! are still metastable and the termina
equilibrium state should occur for much larger times. T
clarification of this point naturally deserves further effo
which is out of the scope of the present work.

Although large fluctuations~as time evolves! may be ob-
served in the values of^K&/N in the QSS, it appears eviden
that the gap with respect to the corresponding termin
equilibrium-state values survives in the thermodynam
limit. If one defines the lifetime of the QSStQSS as the time
at which ^K&/N presents its halfway between the values
the QSS and the terminal thermal equilibrium, one conclu
that such a quantity increases, essentially, linearly withN, as
shown in Fig. 3, for the energies considered in Figs. 2~a!–
~d!. Therefore, the duration of the QSS increases withN, in
such a way that, if the thermodynamic limit is perform
beforethe long-time limit, the system will never relax to th
terminal thermal equilibrium.

C. Sensitivity to the initial conditions

Let us now investigate how the maximal Lyapunov exp
nentlmax scales withN. Herein we shall use the well-know
method for calculating such a quantity by considering
limit @37#

FIG. 3. Log-log plots of the lifetime (tQSS) of the QSS as a
function ofN, for the energy densities considered in Figs. 2~a!–~d!.
Simple linear fits yield the slopes 0.9960.05 (u50.75), 1.10
60.06 (u50.96), 1.0160.02 (u51.32), and 0.9560.06 (u
57.20). In each case, the slope is very close to 1~represented by
the dashed line!, in such a way thattQSS;N in all cases. The initial
conditions are water bag for velocities andm51.
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lmax5 lim
t→`

1

t
lnF d~ t !

d~0!G5 lim
t→`

l~ t !, ~3.2a!

d~ t !5H (
i 51

N

(
m5x,y,z

@~dLim!21~dSim!2#J 1/2

, ~3.2b!

where d(t) represents the metric distance calculat
from infinitesimal displacements in phase space,
time t. We have carried simulations up tot510 000 ~i.e.,
200 000 time steps!, for different system sizes (N
550, 100, 400, 1600, 3200), andlmax was obtained after
averaging overNs550 samples for the smallest size (N
550), whereas for all other sizes we have consideredNs
510. For the cases where there is an apparent QSS, the
interval considered ensures that thelmax computed does in-
deed correspond to a quantity in the QSS@see, e.g., Figs.
2~a!–~d!#, whereas for the cases where there is no evid
QSS, the time used is expected to be sufficient for the sys
to have reached its terminal thermal equilibrium. As sho
in Fig. 4, one has thatlmax;N2k, similarly to what happens
for the XY version of the present model@23,30,34,35#. We
computedk for energies belowuc (u50.30), as well as for
u@uc (u57.2), with the above-mentioned initial condition
we have obtained essentially the same estimate in both ca
k50.22560.030. We have also computed the exponenk
near criticality and found values that are not in the sa
universality class of those far from criticality. In fact, pre
liminary estimates foru50.96 and u51.32 suggestk
50.1560.02. Whether such estimates are spurious, due
the nearness of the critical point, or are in some way rela
to a possible three-plateaux structure, turns out to be a p
that deserves further investigation. It is important to rem

FIG. 4. Log-log plots of the maximum Lyapunov exponentlmax

vs N, for energies densities below (u50.3) and above the critica
point (u57.2), showing the scalinglmax;N2k. The slopes are es
sentially the same, within the error bars, yieldingk50.225
60.030. Foru57.2, the distinction between the metastable a
terminal equilibrium states is very clear, and this value ofk corre-
sponds to the metastable one. Foru50.3, the distinction in not very
clear, and this value ofk presumably corresponds to the termina
equilibrium state.
5-5
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F. D. NOBRE AND C. TSALLIS PHYSICAL REVIEW E68, 036115 ~2003!
that, in the mean-field inertialXY model, one hask51/3 for
u@uc @23,30,34#, whereask51/9 for u,uc @35#; in the
former case, there is no apparent QSS, in such a way tha
estimatek51/3 is expected to apply to a terminal therm
equilibrium state, whereas in the latter,k was obtained at the
peculiar QSS. Such estimates find no similarity with the o
far from criticality presented herein for the Heisenberg ca
which apply to the QSS foru@uc , whereas for the low
energy considered (u50.30) in the caseu,uc we have
found no clear evidence of a QSS~although the presence o
a QSS, with a small gap, indiscernible due to fluctuations
^K&/N, with respect to the terminal-equilibrium state, is n
ruled out!. However, the common feature observed for bo
XY and Heisenberg models,lmax;N2k ~yielding a zero
maximal Lyapunov exponent in the thermodynamic limi!,
which seems to hold in the presence or not of an evid
QSS, does certainly contradict the standard BG theory fo
equilibrium state~which requires a finitelmax in the thermo-
dynamic limit!.

IV. CONCLUSION

We have analyzed a system ofN Heisenberg-like classica
rotators with ferromagnetic infinite-range interactions. T
dynamics of the model was studied within the microcano
cal ensemble by directly solving the equations of motion. F
a finite N, the time evolution of the kinetic temperatu
shows that there is a basin of attraction for the initial con
tions for which the system gets caught in a metastable s
before reaching the terminal-thermal equilibrium. We ha
shown that the duration of such a metastable state diverge
N→`, typically linearly withN. Therefore, if the thermody
l
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-
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p
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namic limit is considered before the long-time limit, the sy
tem will never relax to the terminal thermal equilibrium. W
have also calculated the maximum Lyapunov expon
above and below the critical point; in both cases, the scal
lmax;N2k, was verified. For the particular initial condition
considered~maximal magnetization!, the exponentk pre-
sents the same value for energies chosen above and b
the critical point,k50.22560.030. Above the critical point
our estimate applies to the metastable state, whereas th
timate below the critical point is expected to hold for th
terminal thermal equilibrium, since in such a case we ha
found no clear evidence of the existence of a metasta
state. Preliminary studies suggest that, above criticality,
exponentk does not depend, within the error bars, on t
initial conditions employed; however, below criticality, di
ferent initial conditions may possibly lead to a breakdown
universality, with different estimates fork. In particular, the
k estimates below criticality seem to vary if the initial co
ditions for the spin variables break or not the Heisenberg-
symmetry of the system, i.e., if we start withmÞ0 ~present
paper! or m50. Further studies to clarify this point const
tute the next step along the present lines.
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