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An N-sized inertial classical Heisenberg ferromagnet, which consists of a modification of the well-known
standard model, where the spins are replaced by classical rotators, is studied in the limit of infinite-range
interactions. The usual canonical-ensemble mean-field solution of the inertial classieetor ferromagnet
(for which n=3 recovers the particular Heisenberg model considered hesegimiefly reviewed, showing the
well-known second-order phase transition. This Heisenberg model is studied numerically within the microca-
nonical ensemble through molecular dynamics. In what concerns the caloric curve, it is shown that, far from
criticality, the kinetic temperature obtained at the long-time-limit microcanonical-ensemble simulation recovers
well the equilibrium canonical-ensemble estimate, whereas, close to criticality, a discrépeesymably due
to finite-size effectsis found. The time evolution of the kinetic temperature indicates that a basin of attraction
exists for the initial conditions for which the system evolves into a metastable state, whose duration diverges
asN—oo, before attaining the terminal thermal equilibrium. Such a metastable state is observed for a whole
range of energies, which starts right below criticality and extends up to very high enérgfest, the gap
between the kinetic temperatures associated with the metastable and the terminal-equilibrium states is expected
to disappear only as one approaches infinite enefy the best our knowledge, this has never before been
observed on similar Hamiltonian models, in a noticeable way, for such a large range of energies. For example,
for the XY (n=2) version of the present model, such a behavior was observed only near criticality. It is shown
also that themetastable statenaximum Lyapunov exponent decreases withke \ ,,,,—~N"*, where for the
initial conditions employed hereifmaximal magnetization x=0.225+0.030, both above and below the

critical point.
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[. INTRODUCTION complexy structure in phase space. In such cases, the BG

statistical-mechanics framework looses its validity and some
The Boltzmann-GibbgBG) statistical mechanics repre- more general theory must be employed. Recently, a large

sents one of the most successful physical theories, providingariety of evidences has been presented, exhibiting results
a good description of many experimental systems at equilibthat do not conform with the BG formalism; one may men-
rium [1-3]. The applicability of such a formalism is justified tion observations on turbulent plasmids, turbulent fluids
upon the validity of the ergodic hypothesis, which requires 68|, astrophysical system®-13|, quantum chao$14],
that the whole phase space should be equally visited in thi@gistic map [15], glasses[16,17, and complex systems
infinite-time limit. Typically, this occurs for large Hamil- 18,19, among others. Such systems exhibit evident incon-
tonian systems, with dynamical variables connected b Istencies W'th one of the main characteristics in the BG
short-range interactions, leading to a microscopic dynamic ormahsm, Wh'ch is the extensivity of the entropy and the

exponential weight factor associated with it. For an

characterized by a guasicontinuum  Lyapunov Specmj”.1N-particle system, the extensivity property means that quan-

whose largest value remains positive in the thermodynam|ﬁties such as the internal or free energsr particle should

limit. Such a chaotic dynamical behavior leads to a qu'Ckapproach a well-defined finite thermodynamic limit wHgn

occupation of phase space, ensuring a safe use of the en:_, "\ypan |ong-range interactions are present, each micro-

semble theory, and SO the BG stat|st|c§ may be connected g%opic constituent of the system interacts with all the others,
the standard extensive thermodynamics in the well-knowrpeading to an energy that depends more than linearljNon

elegant manner. However, ergodicity and, consequently, thgng  obviously, to a nonextensive behavior. As a conse-
validity of the standard equilibrium ensembles, depend crugyence of this, additivity does not hold, in the sense that the
cially on the nature of the Hamiltonian system consideredree energy of the whole system is not equal to the sum of
[4]. In particular, systems characterized by long-range interthe free energies of its macroscopic parts, and the application
actions, or long-range microscopic memory, may present af the BG formalism becomes questionable. A generalized
breakdown of ergodicity, leading to a fraci@r even more nonextensive thermostatistical formalism, proposed over a
decade ag¢20,21], seems to be a good candidate to deal
with such systems.
*Corresponding author. Email address: nobre@dfte.ufrn.br Recently, a lot of attention has been dedicated to a clas-
"Email address: tsallis@cbpf.br sical Hamiltonian system, namely, the inertial long-range-
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interactionXY model, which consists of an assembly df metric tensor of rank 2, witm(n—1)/2 components. This
classical planar rotators interacting through a long-range paaumber coincides with for n=3, allowing us to treat as
tential[22—35. Such a system, which has been investigated (pseudgvector forn=3.

numerically within the microcanonical ensemble, presented It is important to remind that thé&l dependence in the
clear indications that a more general statistical-mechaniceoupling constant above, is usuallyut not necessarily, see
formalism is required for its description. In particular, for the Ref. [24]) introduced in order to yield a sensible thermody-
case of infinite-range interactions, i.e., mean-field limit, fornamic limit, i.e, a finite free energy per particle whah
which a well-known continuous phase transition occurs, if—o, within the equilibrium ensemble theory of standard
one considers a total energy close to and below the criticadtatistical mechanics.

energy, there exists a basin of attraction for the initial condi- The rotators are allowed to vary their directions continu-
tions for which the system gets captured in a metastableusly inside am-dimensional sphere of unit radius, leading
state, whose duration increases wiNhbefore attaining the to the constraint

terminal thermal equilibrium. Therefore, if one considers the

thermodynamic limit N— «) beforethe long-time limit, the n

system will remain in the metastable state and will never > =1 (i=12,...N). (2.2)
reach the terminal equilibrium state, in such a way that the =

phase space wilhot be equally and completely covered.

Moreover, in such a metastable state, the maximuny ghouid be mentioned that such a constraint reduces the
Lyapunov exponent approaches zeroNas ¢, contrary 0 mper of degrees of freedom per particlete 1, in such a
what is expected in a standard BG equilibrium state. way that the total number of degrees of freedom of the sys-

In the presefnthwqulwedp_erfor_ml F“?'e_cu'ar dynamical in-yem s given byN(n—1). The model defined above recov-
vestigations, of the isolated inertial infinite-range-interactiongrs as particular cases, the mean-field inebal (whose

He|senberg ferromagnet, defined Nyclassical Heisenberg- equilibrium canonical-ensemble solution was presented in
like rotators. We show that the metastable state that occurs Bef [22]) and Heisenbergwhose dynamics will be dis-
the correspon_dlng(Y_versmn of the model, near criticality, cussed in the following sectiprmodels, forn=2 andn
how appears in a noticeable way for a much_ \_N|d_er extent, fOE3, respectively. Although our model is composed of one-
an energy range t_hat startg right below cr|t!cal|ty a_nd Pro-imensional inertial constituenfsotatorg, we shall some-
longs up to very high energies. In the following section, we = . . .
times refer toS=(S;,S,, ... ,S,) as spin variables, consid-

review the equilibrium canonical-ensemble solution of the . ' ;
model. In Sec. Ill we present the results of our numericaffiNg the close analogy of the above-defined model with the

investigation, and finally, in Sec. IV, we present our mainSt"’mdarch vector ferromagnet. -
conclusions. One may now follow the standard procedure by rewriting

the Hamiltonian as

II. THE EQUILIBRIUM CANONICAL-ENSEMBLE

1 n
SOLUTION H

1 N n N 2
+5 2 D Lo > | XS, 23
—_ . 2 2N =\ =
Let us now work out the equilibrium canonical-ensemble
solution of the model. For the sake of generality, throughout
this section, we will deal with an inertia-vector ferromag- in such a way that the partition function becomes
net, composed oN classical rotators, each of them defined

in an n-dimensional configurational space. The Hamiltonian

—,BN N N n-1
of the system is given by Z=eXp< 5 )f (H 11 dSM)(H 11 d'—m)

i=1p=1 i=1p=1
1 N n 1 N o N n-1 _ |_2
V=3 3 3 g 2,008 9 AT 3, 51| LI o 52
i=1 n=1 =1 p=1
1 N n , 1 N n n N 2
2521;1 Luﬁmljg_l(l—/; SiuS; ) ><|}'[1 exr{(%)(a sm) ] (2.4
2.)

The constraints of Eq(2.2) are taken into account in the
where the indexu (#=1,2, ... n) denotes Cartesian com- equation above, through th& functions, as well as in the
ponents and.;,, represents th@ component of the angular products over the angular momentum variables, which apply
momentum(or the rotational velocity, since we are assumingonly over the effective number of degrees of freedom per
unit inertial moments of rotatori, whenn=3; whennis  particle, x=1,2,... n—1. The square®; may be linear-
different from 3,L;,, can be considered as a proper generalized through the application of a Hubbard-Stratonovich-like
ized momentum. In fact, for the general casenofompo-  transformation[2], which introduces a set of parameters
nents(as considered in the present secljdnis an antisym- {X,}; rescaling{x,,}— \/N{xﬂ} one gets
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=[5 e 2 (111
xexy{ NX )

n . . . . "
5 which may be substituted into E(R.11) to yield the critical
> S _1)]' (2.9 energy density

consideringm small and expanding the right-hand side of
Eq. (2.9 in power seriegwe work in units ofkg=1),

N n
d 1/2 _E I'(n/2) _E
]H[ }l[ S .exp(BY%S,x,,)] =3 Fne 23 = (2.13

( N )1/2 The critical temperature of the model may be obtained by
y23

As usual, thq site index may be discarded, and straightfor- uc=1[1+(n—1)TC]=1— i (2.14
ward calculations lead to 2 2n
2.7\ N(n—1)/2 BN n 12 The above results recover those obtained in R&], for n
Z= 5 ex;{ )f H ) X, =2, e.g., the self-consistent equation

X

. — iy
2 =2 (2.15
conf-n[ 3 S| es T

leading toT.=1/2 andu.=3/4. For the casa= 3, one gets

where the well-known self-consistent equation
n 1/2 1
&= 2(n—2)/277ny—(n—2)/2|(niz)lz(y), y=(,82 xi) , m= coth( 8m) — B_m (2.19
=

with T.=1/3 andu.=5/6. Forn increasing from unitylsing
with 1,(y) denoting modified Bessel functions of the first modeb to infinity (spherical mode) T decreases from 1 to 0
kind of orderk. ConsideringN large, one may use steepest andu, increases from 1/2 to 1.
descents In the following section we discuss the dynamics of the
particular casen=3 of the model defined above.
277) N(n—1)/2 % _BN)
— ex

z~| 5

Ill. DYNAMICS OF THE MEAN-FIELD INERTIAL

2 HEISENBERG MODEL

xexp{ Nma>g,( 25 Ing(y)),

(2.8 A. Molecular dynamics

In this section we will present the results obtained by
with the condition of maximum leading to the self-consistentsimulations of the constant-energy dynamics of the model

equation defined by Eqgs(2.1) and (2.2 for the particular case
o =3, i.e., Heisenberg-like rotators. From now on, we will use
— 1dé¢ FhaY) the standard notation for the Cartesian components of a
y=2 E@ y_y: I(n—2)/2(?). (2.9 Heisenberg model, i.ex=x,y,z. The results to be dis-

cussed below were obtained by a direct integration of the
In the thermodynamic limit, one obtains the free energy pefduations of motion

particle 1 N
_ L=Sx|= > é,-) (i=1,2,...N), (3.1a
f—B n—ll 2 y2 | — 21 Nj=1
Bi=%5———Inl— 3 +—B—n§(y), (2.10 o
S=Lix§ (i=12,...N), (3.1b
as well as the internal energy per particle
which correspond to a set of\6equations to be solved nu-
n-1 1 25 merically.
U="25 +5(1=m%), (2.1) It should be stressed that Eq®.1) are not canonical

equations of motion, sincf.;,} and{S;,} are not canoni-
ally conjugate variables. In that sense, one could say that
g. (2.1) represents the energy, and not the Hamiltonian,

from which one obtains the canonical equations of motion.

_ In addition to that, according to the discussion of the preced-

y_ I nia( BM) 2.12 ing section, the generalization of Eq8.1) for n# 3 is to be

B ln-2ydBM)’ ' handled with care.

where m represents the magnetization per particle, whos
modulus is directly related to the parameyer

m=|m|=
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FIG. 1. The caloric curve for the inertial mean-field ferromag-
netic Heisenberg model obtained by the equilibrium canonical-
ensemble solutiofull line). In the vertical axis{K)/N is a quan-
tity that is expected to coincide with the temperature, at
equilibrium. The dashed vertical line signals the second-order phast¢
transition critical energy density,=5/6. The empty squares and
circles represent the estimates(#f)/N from the microcanonical- 0.4+ e
ensemble numerical analysis of a system of $i{ze400, at the 10710 1ot 107107107 10° 10 10710 wt 10710710710 10
metastable state and after that, respectively. For the Hamiltonian
defined in Eq.(2.1), energies are dimensionless quantities. FIG. 2. The microcanonical time evolution ¢K)/N is repre-
sented for several system sizes and different energy densities: just
htzelow criticality[u=0.75(a)], just above criticalityf u=0.96 (b)],
at the region where the gap between the metastable and terminal-
equilibrium states is maximuriu=1.32 (c)] and for u>u. [u
=7.2 (d)]. The initial conditions are water bag for velocities and

<K>/N
S

For solving such a set of equations we have used a fourt
order Runge-Kutta-Merson integratf®6] with a time step
of 0.05, leading, respectively, to the relative energy and spin

. . . 3
normalization conservations of 1hand 10 3, or better. The m=1. For the Hamiltonian defined in Eq2.1), energies are di-

total initial kinetic energy was divided into three equal parts, mensionless guantities. The time is also dimensionless and each

each of them to be assigned to a given set of Cartesian cOMit of (physica) time t corresponds to 20 iterations of the equa-
ponents of angular velocitie$l;,} (i=1,2,...N). We  tions of motion.

have always started the system with the so-called water-bag
initial conditions[29,30,34 for each set of components of =1.32 [Fig. 2(c)] is inside a range of energies where the
angular velocities, i.e., each sgt;,} was extracted from a kinetic temperatur¢K)/N presents a maximum discrepancy
symmetric uniform distribution and then, translated and reshetween its values at intermediate and long times. Finally,
caled to have zero total momentum. In what concerns theéhe fourth chosen energy=7.2[Fig. 2(d)] corresponds to a
spin variables, we have started our simulations with all spingalue far aboveu.. In all the plots of Figs. @)—(d) the
aligned along thez axis (zero initial potential energy Our  system was started with the above-mentioned initial condi-
measured quantities correspond to averages Nyatistinct  tions and we have consideredy=16 (N=200), N,=12
samples, i.e., different initial sets ¢k, ,}. (N=400), Ny=8 (N=800), andNg=4 (N=1600). We
have observed that, after a short transient, the system rapidly
reached a metastable or quasistationary §@®S, with a
value of (K)/N higher than the one predicted by the

In Fig. 1 we exhibit the caloric curvéull line) obtained  canonical-ensemble equilibrium theory. It is important to re-
by solving the equilibrium canonical-ensemble equationsmind that a QSS has been found also for the corresponding
[Egs.(2.11) and(2.12]. We have chosen four particular val- XY version of the present model, in an unambiguous way,
ues of the energy density to investigate, within ouronly near criticality[23,25,27,29,30,34Except for very low
microcanonical-ensemble molecular dynamical approachgnergies, the QSS is always detected easily in the Heisenberg
how (K)/N evolves in time, for different values dfl (it  case; this is shown in Fig. 1, where we exhibit the values of
should be mentioned that the quant{tg)/N, which repre- (K)/N for both QSSs (empty squares and terminal-
sents an average over different initial conditions of the ki-equilibrium stategfempty circle$, for systems withN=400
netic energy per particle, when evaluated attthe~ equi- and different values of the energy density. One clearly sees
librium, is expected to coincide with the temperajuiBvo  that, in what concerns the value @€)/N at long times, the
of the chosen energies=0.75[Fig. 2@] andu=0.96[Fig. ~ thermodynamic limit may be attained within our computa-
2(b)], correspond, respectively, to values slightly below andtional effort (in the sense that the present microcanonical-
above the critical internal energy{=5/6). The energyu ensemble numerical approach agrees with the equilibrium

B. Caloric curve and metastability
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FIG. 3. Log-log plots of the lifetime tgsg of the QSS as a FIG. 4. Log-log plots of the maximum Lyapunov expon&p,
function of N, for the energy densities considered in Fig@)2(d). VS N. for energies densities belowi{-0.3) and above the critical
Simple linear fits yield the slopes 0.8®.05 u=0.75), 1.10 Point (U=7.2), showing the scaling,,~N"*. The slopes are es-
+0.06 (U=0.96), 1.0%+0.02 U=1.32), and 0.950.06 (u sentially the same, W|th|r1 .the. error bars, yielding=0.225
=7.20). In each case, the slope is very close toepresented by 10.930. For_L_1=_7.2, the dl_stlnctlon between the metastable and
the dashed linein such a way thatioss~N in all cases. The initial terminal equilibrium states is very clear, and this valuecaforre-
conditions are water bag for velocities and-1. sponds to the metastable one. e+ 0.3, the distinction in not very

clear, and this value o& presumably corresponds to the terminal-
canonical-ensemble resyltéor u>u., whereas foru~u equilibrium state.
(typically in the range 0.25u<1.25), one observes a dis-

crepancy between the numerics and the analytical BG result. 1 [d(t)
In fact, the terminal-equilibrium value ofK)/N seems to Nmax= Iimfln W}: limX\(t), (3.2a
reach its thermodynamic limit for very small systemspif t—oo O] e

>u, [as shown in Fig. @), for the casai=7.2, where for
the sizeN=200 the thermodynamic limit appears to be at- N
tained. We find two possible causes for explaining the dis- d(t)= | E
crepancies shown in Fig. 1, near criticality} strong finite- =1 n
size effects, in such a way that one should run much larger
sizes than those exhibited in FiggaRand 2b) in order to ~ Where d(t) represents the metric distance calculated
reach the thermodynamic-limit values ard) a three- from infinitesimal displacements in phase space, at
plateaux structure, i.e., the long-time states exhibited in Figgime t. We have carried simulations up te=10000 (i.e.,
2(a) and 2b) are still metastable and the terminal- 200000 time steps for different system sizes N
equilibrium state should occur for much larger times. The=50, 100, 400, 1600, 3200), ang,,, was obtained after
clarification of this point naturally deserves further effort, averaging overN,=50 samples for the smallest siz&\ (
which is out of the scope of the present work. =50), whereas for all other sizes we have considexgd
Although large fluctuationgas time evolvesmay be ob- =10, For the cases where there is an apparent QSS, the time
served in the values ¢K)/N in the QSS, it appears evident jnterval considered ensures that the,, computed does in-
that_ .th(.a gap with respect to_the c_:orrespondmg termlna}ldeed correspond to a quantity in the QB®e, e.g., Figs.
equilibrium-state values survives in the thermodynamué(a)_(d)], whereas for the cases where there is no evident

”mit'hl.f gnﬁ d/eNfines the IifgtiT]elfC:L thebQS'%SS ash the tlime QSS, the time used is expected to be sufficient for the system
at which (K)/N presents its halfway between the values o have reached its terminal thermal equilibrium. As shown

the QSS and the terminal thermal equilibrium, one concludeg, Fig. 4, one has that, ,~N"*, similarly to what happens
that such a quantity increases, essentially, linearly Witas for thé X,Y version of tT]aé( presént modE23,30,34,35 We
(S:)ov_l\fzé?eg?e' ?;héoélj?;iggegg'tﬁz (:chg?r?é?galsnegl\%ﬁhﬁ computedk for energies below, (u=0.30), as well as for

' ' us>u. (u=7.2), with the above-mentioned initial conditions;

such a way tha_t, if f[h? thermodynaml_c limit is performed we have obtained essentially the same estimate in both cases,
beforethe long-time limit, the system will never relax to the = —
terminal thermal equilibrium. K—0.22_5_t 0:030. We have also computed the_exponent
near criticality and found values that are not in the same

universality class of those far from criticality. In fact, pre-
liminary estimates foru=0.96 and u=1.32 suggestk

Let us now investigate how the maximal Lyapunov expo-=0.15+0.02. Whether such estimates are spurious, due to
nenta .« scales withN. Herein we shall use the well-known the nearness of the critical point, or are in some way related
method for calculating such a quantity by considering theto a possible three-plateaux structure, turns out to be a point
limit [37] that deserves further investigation. It is important to remind

=X,y,z

1/2

C. Sensitivity to the initial conditions

036115-5



F. D. NOBRE AND C. TSALLIS PHYSICAL REVIEW E68, 036115(2003

that, in the mean-field inertiad Y model, one hag=1/3 for ~ namic limit is considered before the long-time limit, the sys-
us>u, [23,30,34, whereask=1/9 for u<u, [35]; in the tem will never relax to the terminal thermal equilibrium. We
former case, there is no apparent QSS, in such a way that thi&wve also calculated the maximum Lyapunov exponent
estimatex=1/3 is expected to apply to a terminal thermal above and below the critical point; in both cases, the scaling,
equilibrium state, whereas in the latterwas obtained at the An,ox~N"*, was verified. For the particular initial conditions
peculiar QSS. Such estimates find no similarity with the onesonsidered(maximal magnetization the exponentx pre-
far from criticality presented herein for the Heisenberg casesents the same value for energies chosen above and below
which apply to the QSS fou>u., whereas for the low the critical point,x=0.225+0.030. Above the critical point
energy consideredu&=0.30) in the casau<u, we have our estimate applies to the metastable state, whereas the es-
found no clear evidence of a Q3&lthough the presence of timate below the critical point is expected to hold for the
a QSS, with a small gap, indiscernible due to fluctuations irterminal thermal equilibrium, since in such a case we have
(K)/N, with respect to the terminal-equilibrium state, is notfound no clear evidence of the existence of a metastable
ruled ou}. However, the common feature observed for bothstate. Preliminary studies suggest that, above criticality, the
XY and Heisenberg models\,,~N"* (yielding a zero exponentx does not depend, within the error bars, on the
maximal Lyapunov exponent in the thermodynamic limit initial conditions employed; however, below criticality, dif-
which seems to hold in the presence or not of an evidenterent initial conditions may possibly lead to a breakdown of
QSS, does certainly contradict the standard BG theory for anniversality, with different estimates far. In particular, the
equilibrium statgwhich requires a finite\ 5 in the thermo-  « estimates below criticality seem to vary if the initial con-
dynamic limip. ditions for the spin variables break or not the Heisenberg-like
symmetry of the system, i.e., if we start with= 0 (present
IV. CONCLUSION papeij or m=0. Further studies to clarify this point consti-

. ) . tute the next step along the present lines.
We have analyzed a systemNHeisenberg-like classical

rotators with ferromagnetic infinite-range interactions. The
dynamics of the model was studied within the microcanoni-
cal ensemble by directly solving the equations of motion. For We thank C. Anteneodo, E. P. Borges, and E. M. F.
a finite N, the time evolution of the kinetic temperature Curado for fruitful conversations. The partial financial sup-
shows that there is a basin of attraction for the initial condi-ports from CNPq, Pronex/MCT, and FAPERBrazilian
tions for which the system gets caught in a metastable statagencies are acknowledged. One of &.D.N,) acknowl-
before reaching the terminal-thermal equilibrium. We haveedges CBPRCentro Brasileiro de Pesquisasieas for the
shown that the duration of such a metastable state diverges a&rm hospitality during a visiting period in which this work
N—oo, typically linearly withN. Therefore, if the thermody- was accomplished.
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